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Abstract. A new designed genetic algorithm was run on experimental data obtained 

from measurements of octanol-water partition coefficients of a series of polychlorinated 
biphenils, in order to relate their structure with their activity. A family of molecular 
descriptors having all necessary ingredients to run a genetic algorithm on it characterized the 
structure. An experiment using different selection and survival strategies were conducted, 
when multiple runs were recorded and their results were analyzed. Total number and number 
of distinct of genotypes present in the generations leading to evolution were included in an 
analysis concerning the validity of data with Benford test, the methodology and the obtained 
results being given.  
 

Keywords: distribution fitting; statistical agreement; genotypes number; genetic 
algorithm; survival strategy; selection strategy; Benford statistic 
 

INTRODUCTION 
 

The Benford test uses the normal distribution to check if for an array of numbers their 
digits follow the Benford distribution. 

The hypothesis of the test is that the values of the observations measurements are often 
logarithmically distributed and thus the logarithm of the measurement set is uniform 
distributed. The distribution, test, and its statistic are called after the physician Frank 
BENFORD, who discovered first and it formulated intuitively (Benford, 1938), inspired in its 
survey by a short communication of Simon NEWCOMB (Newcomb, 1881). The proof of the 
distribution it comes later being given by Theodore P. HILL (Hill, 1995). 

This intuitively result of counting digits occurrences of the numbers was found true to 
a large variety of datasets, including electricity bills (Christian and others, 1993), forensic and 
financial audits (de Marchi and Hamilton, 2006; Nigrini and Mittermaier, 1997), stock 
exchanges (Ley, 1996), river basin area, weights of chemicals and streets addresses (Benford, 
1938), roundoff errors (Barlow and Bareiss 1985), population numbers (Sandron, 2002), 
ceasing rates (Leemis and others, 2000), physical and mathematical constants and a lot of 
processes described by power lows common in nature (Newcomb, 1881; Berger and Hill, 
2007). 

An important result is that the result (once observed when the number is expressed in a 
numeration base) is independent of the numeration base in which the numbers were 
expressed, even if the proportions of representation are changing (Pinkham, 1961; Hill, 1995). 
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A natural consequence of the existence of the Benford law is that this fact can be used 
to validate the reported data under the presumption of the altering (mystification) of them, the 
immediate approach being the comparing of the observed first digit frequencies with the 
theoretical ones (Diekmann, 2007; Günnel and Tödter, 2008). 

The Benford test were run on the results giving numbers of alive genotypes obtained 
from runs of a genetic algorithm searching on structure-activity relationships between the 
structure of a series of 206 biphenyl polychlorinated compounds and their observed octanol-
water partition coefficient, in order to test if these numbers follows the Bendford law. 
 

MATERIALS AND METHODS 
 

 In forty-six independent runs for every combination of survival method and selection 
method from Deterministic, Tournament and Proportional types were recorded the evolutions 
of a genetic algorithm (Jäntschi, 2009). On these data, for twenty equal width classes of 
observation, from generation 1 to the generation 20000, the total number of genotypes and the 
number of distinct genotypes were grouped and the observed frequencies were obtained 
(Table 1). 
 
Table 1. Observed frequencies of the viable genotypes in the generations leading to evolution 

from forty-six independent runs for different selection and survival strategy 
SelSrv Millennium 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

PP num_obs 732 141 97 62 36 44 25 30 35 32 29 16 20 15 8 7 12 21 17 20 
PP sum_obs 8366 1580 1073 700 417 500 285 339 390 358 330 186 221 166 92 84 134 245 201 235
PT num_obs 713 171 133 89 54 44 40 33 32 32 11 28 32 26 10 21 6 8 11 15 
PT sum_obs 8207 1960 1505 1013 609 505 455 383 363 369 127 313 362 279 111 239 69 90 128 161
PD num_obs 748 159 101 85 60 71 24 25 28 21 22 33 24 25 10 15 15 22 14 18 
PD sum_obs 8825 1858 1166 990 702 829 273 286 326 243 257 384 278 292 116 171 176 256 162 207
TP num_obs 655 159 110 88 57 31 37 33 34 27 25 23 17 9 7 8 9 12 10 13 
TP sum_obs 7470 1741 1202 992 639 331 410 363 372 300 278 262 191 100 79 92 99 134 115 147
TT num_obs 740 178 92 62 56 37 38 31 21 23 19 25 14 17 18 25 9 1 7 12 
TT sum_obs 8475 1988 1025 700 625 424 427 352 237 248 218 269 159 195 199 278 102 12 82 136
TD num_obs 757 110 98 83 61 66 49 39 21 31 29 25 31 16 5 4 14 9 11 16 
TD sum_obs 8969 1282 1145 963 704 769 569 453 244 364 333 291 364 187 59 48 165 105 129 188
DP num_obs 422 94 44 33 43 28 15 43 31 15 15 17 12 17 16 9 15 17 6 5 
DP sum_obs 4739 987 450 349 467 289 150 451 344 167 166 183 116 163 157 99 150 190 68 57 
DT num_obs 431 110 65 51 48 39 38 45 36 43 14 25 29 13 8 16 8 10 11 2 
DT sum_obs 4883 1223 719 558 533 440 411 477 385 468 153 273 312 139 92 169 87 111 119 20 
DD num_obs 466 120 81 66 53 41 24 39 51 24 11 19 18 23 23 14 19 12 24 2 
DD sum_obs 5511 1402 949 772 627 486 283 459 596 283 130 225 212 271 270 166 222 143 285 24 

SelSrv: 46 runs using Sel and Srv as selection and survival strategies; 
Srv, Sel ∈ {P, T, D}; P - Proportional strategy; T - Tournament strategy; D - Deterministic strategy; 
Millennium = 1000 generations; num_obs: number of distinct genotypes; sum_obs: total number of genotypes;  

 
 First three digits of the numbers from Table 1 were included into the analysis of the 
agreement with Benford distribution. 
 The theoretical probabilities of the Benford distribution for first (d0, Eq.1), second (d1, 
Eq.2) and third (d2, Eq.3) digits are given by following relationships: 
  ( 0b0 d11log)d(p += ) , d0 = 1..(b-1)      (1) 
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where b is the numeration base (b = 10 for the data given in Table 1).  
 

RESULTS AND DISCUSSION 
 
 The theoretical (Benford) and the observed relative differences are given in Figure 1. 

 
Benford: Theoretical distribution; Difference: observed difference relative to theoretical 

Figure 1. Probability distribution functions (PDF) and cumulative distribution functions 
(CDF) for first three digits (d0, d1, and d2 respectively) of the data from Table 1 
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 The plots from Figure 1 show a small disagreement between observation and the 
model of the Benford distribution. In order to measure its observing probability, two statistics 
were involved: Chi Square (Table 2) and Kolmogorov-Smirnov (Table 3); their results are 
analyzed in the next. 
 Benford distribution does not have unknown (to be estimated) parameters. The 
numeration base (Eq.1-3) is known being 10, and thus the degrees of freedom are number of 
digits minus one (Table 2). 
 

Table 2. χ2 test on observed frequencies of the data from Table 1 
(null hypothesis: first, second, and third digits follows Benford distribution) 

Digit (i) Expected frequency (Ei) Observed frequency (Oi) (|Oi-Ei|-0.5)2 (|Oi-Ei|-0.5)2/Ei
d0 d1 d2 d0 d1 d2 d0 d1 d2 d0 d1 d2 d0 d1 d2 
0 0 0 - 40 19 - 28 25 - 144 36 - 3.31 1.59
1 1 1 108 38 19 117 41 18 81 9 1 0.67 0.16 0.01
2 2 2 63 37 18 72 37 18 81 0 0 1.15 0.01 0.01
3 3 3 45 35 18 48 33 20 9 4 4 0.14 0.06 0.13
4 4 4 35 34 18 33 34 11 4 0 49 0.06 0.01 2.35
5 5 5 29 33 18 17 42 15 144 81 9 4.56 2.19 0.35
6 6 6 24 32 18 16 34 18 64 4 0 2.34 0.07 0.01
7 7 7 21 31 18 18 30 18 9 1 0 0.30 0.01 0.01
8 8 8 18 30 18 19 31 16 1 1 4 0.01 0.01 0.13
9 9 9 17 29 18 20 29 23 9 0 25 0.37 0.01 1.13

Σ (df=8) Σ (df=9) Σ (df=9) 360 339 182 360 339 182 402 244 128 9.60 2.53 4.12
X2(d0)=9.6; pχ2(9.6,8)=29.4%; X2(d1)=2.53; pχ2(2.53,9)=98.0%; X2(d2)=4.12; pχ2(4.12,9)=90.3%; 
 

Table 3.  Kolmogorov-Smirnov test on observed cumulative frequencies of the data from 
Table 1 (null hypothesis: first, second, and third digits follows Benford distribution) 
Digit Expected (d0e, d1e, d2e) and Observed (d0o, d1o, d2o) Difference | Difference | 

d0 d1 d2 d0a d1a d2a d0o d1o d2o d0 d1 d2 d0 d1 d2 
0 0 0 0 40 19 0 28 25 0 12 -6 0 12 6
1 1 1 108 78 38 117 69 43 -9 9 -5 9 9 5
2 2 2 171 115 56 189 106 61 -18 9 -5 18 9 5
3 3 3 216 150 74 237 139 81 -21 11 -7 21 11 7
4 4 4 251 184 92 270 173 92 -19 11 0 19 11 0
5 5 5 280 217 110 287 215 107 -7 2 3 7 2 3
6 6 6 304 249 128 303 249 125 1 0 3 1 0 3
7 7 7 325 280 146 321 279 143 4 1 3 4 1 3
8 8 8 343 310 164 340 310 159 3 0 5 3 0 5
9 9 9 360 339 182 360 339 182 0 0 0 0 0 0
Σ Σ Σ - - - - - - -66 55 -9 82 55 37

D(d0)=21; K(d0)=21√9/360; pKS(9,21√9/360)=90.8%; 
D(d1)=12; K(d1)=12√10/339; pKS(10, 12√10/339)=95.2%; 
D(d1)=7; K(d1)=7√10/182; pKS(10, 7√10/182)=94.6%; 
 
 High observation probabilities results from Chi Square test. A geometric mean of 64% 
of all three probabilities gives 64% probability to observe a worst agreement between the 
observed data following the Benford distribution and the theoretical Benford distribution 
under Chi-Square test hypothesis. Thus the hypothesis of Benford distribution of the digits 
from Table 1 cannot be rejected by using Chi Square statistic. Even higher probabilities 
results from Kolmogorov-Smirnov test. A geometric mean of 94% of all three probabilities 
gives 94% probability to observe a worst agreement between the observed data following the 
Benford distribution and the theoretical Benford distribution under Kolmogorov-Smirnov test 
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hypothesis. Thus the hypothesis of Benford distribution of the digits from Table 1 cannot be 
rejected by using Kolmogorov-Smirnov statistic. 
 The only one remained question about the analysis of the data from table 1 is 
regarding the difference between observation probabilities given by Chi Square test (64%) 
and Kolmogorov-Smirnov test (94%). 
 It's well known () that the Chi Square test assumes a normality distribution of the 
errors (squared in Table 2, (|Oi-Ei|-0.5)2 column). A measure of the departure from normality 
may be given by the Jarque-Bera statistic (Jarque and Bera, 1981), as a measure of the 
sufficiency (Fisher, 1922) for Chi Square and Kolmogorov-Smirnov statistics. Under 
assumption of the Gauss distribution of the differences (when Chi Square has highest 
accuracy) the expected population kurtosis is 3, and is 6 under assumption of Laplace 
distribution of the differences (skewness expectation being zero). The kurtosis, the skewness 
and the Jarque-Bera statistic under two assumptions (Gauss and Laplace) for the differences 
from Table 2 are given in Table 4. 
 

Table 4. Kurtosis and skewness of the disagreement between observed and the model 
Disagreement d0 d1 d2 

Kurtosis 2.13 4.60 2.71 
Skewness 0.28 0.81 0.07 

Jarque-Bera(Gauss) 0.41; pχ2(0.41,2)=82% 2.16; pχ2(2.16,2)=34% 0.04; pχ2(0.04,2)=98%
Jarque-Bera(Laplace) 25.1; pχ2(25.1,2)=10-6 4.33; pχ2(4.33,2)=11% 18.1; pχ2(18.1,2)=10-4

 
 Table 4 shows that the largest departure between the results obtained from Chi Square 
statistic and from Kolmogorov-Smirnov statistic is expected to be at d0, followed by d2 and 
the lowest difference should be at d1. 
 Indeed, comparing the probabilities given in Table 2 with the ones given in Table 3, 
largest departure is at d0 (29% from Chi Square, Table 2; 90.8% from Kolmogorov-Smirnov, 
Table 3; difference: 61.4%), followed by d2 (90.3% from Chi Square, Table 2; 94.6% from 
Kolmogorov-Smirnov, Table 3; difference: 4.3%) and by d1 (98.0% from Chi Square, Table 
2; 95.2% from Kolmogorov-Smirnov, Table 3; difference: 2.8%). 
 
 

CONCLUSIONS 
 

With a good confidence, given by the probability to observe the observed departures 
from Benford distribution, the numbers giving the total number and the number of distinct 
genotypes from independent runs of a genetic algorithm by using different selection and 
survival strategies follows Benford law. 

Since (and when in general) the kurtosis of the differences between observation and 
the model shows closeness to the Gauss than the Laplace distribution, a more weight to the 
Chi Square statistic should be assigned when remarks regarding the probability of observation 
are made, and vice versa. 
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